Integralność danych
Data Raid
DataRAID to algorytm oprogramowania sprzętowego zapewniający integralność danych poprzez utworzenie parzystości w celu sprawdzania kompletności i poprawności danych w pamięci flash, opracowany specjalnie dla pamięci 3D NAND flash. Jeżeli oprogramowanie sprzętowe nie jest w stanie naprawić danych za pomocą ECC (kodu korekty błędów), algorytm RAID użyje parzystości i naprawi uszkodzone dane.
Ochrona danych end-to-end
Funkcja zapewniająca ochronę przed błędami podczas przenoszenia danych z komputera na chipa z pamięcią flash i odwrotnie.
Zapisywanie
? kiedy dane przenoszone są z komputera na dysk SSD cache oprogramowanie sprzętowe oblicza parzystość CRC i dodaje ją do danych.
? parzystość CRC sprawdzana jest, kiedy dane z parzystością CRC przenoszone są z pamięci cache do bufora sektorowego.
? oprogramowanie sprzętowe oblicza następnie kody korekcji błędów BCH (LDPC) dla danych i zapisuje je w pamięci flash wraz z danymi i parzystością CRC.
Odczyt
Kiedy dane są odczytywane z NAND proces realizowany jest w odwrotnej kolejności:
? oprogramowanie sprzętowe odczytuje dane z dołączonymi kodami korekcji błędów BCH (LDPC), sprawdza dane i w razie potrzeby naprawia błędy,
? następnie oprogramowanie sprzętowe przenosi dane do pamięci SSD cache, oblicza parzystość CRC i porównuje ją z parzystością przechowywaną z danymi.
Odświeżanie Smart Read
Podczas każdej komendy, sprawdzanie bloku docelowego przebiega w dwóch etapach. Najpierw sprawdza, czy blok został oznaczony komunikatem „potrzeba odświeżenia”. Jeżeli blok został oznaczony, przed odczytaniem zostanie on odświeżony; oznacza to, że wszystkie zapisane stronice z tego bloku zostaną przekopiowane na wolne stronice w innych blokach, a następnie blok zostanie wyczyszczony. Jeżeli blok nie został oznaczony, kontroler sprawdza aktualną liczbę bitów błędów. Jeśli liczba ta jest większa od wartości progowej, blok zostanie oznaczony „potrzeba odświeżenia”, co oznacza, że podczas następnego odczytu zostanie on odświeżony. Oczywiście próg powinna stanowić wartość, przy której algorytm ECC jest w stanie poprawić błędy.
Długowieczność
CoreAnalyzer2
Po dokonaniu wyboru konkretnego SSD klienci często mają trudności w zrozumieniu zachowania na polu, poza danymi podstawowymi takimi jak status SSD i pozostała pojemność. Nie mogą więc wykorzystać wszystkich możliwości SSD. Pierwszym krokiem jest ustalenie dysku SSD odpowiedniego dla konkretnego zastosowania oraz wybór odpowiedniego oprogramowania sprzętowego. Można to zrobić za pomocą programu Apacer CoreAnalyzer2. Program działa na poziomie firmware i monitoruje temperaturę, komendy SATA, losowe lub sekwencyjne zapisywanie/odczytywania, ustawienie partycji z fizycznymi sektorami 4KB, kwestię czy dane zapisywane/odczytywane są zawsze w wielokrotnościach 4KB (ustawienie 4K), liczbę cykli programowania/kasowania, liczbę awarii zasilania, czas jałowy i częstotliwość dostępu do dysku.
Klient może użyć Coreanalyzer2 podczas symulacji pracy lub testów polowych, jeśli symulacja nie jest możliwa. Po przeprowadzeniu testu możliwe jest pobranie pliku logów i wysłanie go do Apacer do przeanalizowania. Apacer analizuje i ocenia, czy dysk SSD nadaje się do tego konkretnego zastosowania albo poleca jeden lub kilka bardziej odpowiednich dysków SSD oraz modyfikacje oprogramowania sprzętowego, które mogą okazać się przydatne.
Mapowanie stronic
Mimo iż nie jest to najnowocześniejsza technologia, warto zauważyć, iż w dyskach SSD Apacera mapowanie stronic stosowane jest zamiast hybrydowego mapowania bloków.
W mapowaniu stronic tabela mapowania składa się z LPN (logicznego numeru stronicy) i PPN (fizycznego numeru stronicy). Po pojawieniu się żądania zapisu na stronicy logicznej tabela mapowania szuka stronicy fizycznej. Jeśli ta już zawiera dane, stronica jest unieważniana i dane zapisywane są na dostępnej wolnej stronicy. Po zapisaniu następuje aktualizacja tabeli w pamięci RAM i NAND flash.
Zaletą mapowania stronic jest zapisywanie danych na dowolnej wolnej stronicy w pamięci Flash, co zwiększa elastyczność. Losowe zapisywanie nie wymaga tworzenia wielu kopii stronic i kasowania bloków. Mapowanie stronic działa lepiej, kiedy jest ich dostępnych wystarczająco dużo. Trzeba więc odzyskać strony unieważnione, „śmieci”, aby stworzyć miejsce na nowe dane. Oprogramowanie sprzętowe wykorzystuje skuteczną technikę „wywozu śmieci”.
Mapowanie stronic wymaga dużej ilości pamięci RAM i flash. W przeszłości stanowiło to problem, szczególnie jeżeli chodzi o systemy wbudowane, w przypadku których koszt ma duże znaczenie. Teraz koszty pamięci RAM i flash spadły tak bardzo, iż technologia mapowania stronic stosowana jest nawet w niektórych kartach pamięci mikroSD.
Rezerwowe bloki pamięci
W celu zmniejszenia amplifikacji i zwiększenia trwałości, niektóre dyski SSD wyprodukowane przez Apacer obsługują rezerwowe bloki pamięci. Za pomocą tej technologii 7% lub więcej przestrzeni na dysku zarezerwowane jest dla oprogramowania sprzętowego w celu „wywozu śmieci” i wymiany nowych uszkodzonych bloków. Zarezerwowane miejsce nie jest dostępne dla użytkowników, tylko dla oprogramowania sprzętowego.
Bezpieczeństwo
TCG Opal 2.0
Opal opracowany przez Trusted Computing Group (TCG) to zbiór specyfikacji bezpieczeństwa stosowany do szyfrowania sprzętowego urządzeń pamięciowych. Innymi słowy, jest to specyfikacja dla dysków samoszyfrujących (SED), która gwarantuje, iż wszystkie dane na dysku są zawsze zaszyfrowane bez stosowania innych rozwiązań szyfrujących.
Grupa robocza Trusted Computing Group opracowała podsystem klasy Opal Security Subsystem Class (SSC), zwany także „Opal SSC” lub w skrócie „Opal” jako protokół zarządzania urządzeniami pamięciowymi. Klasa określa specyfikacje dotyczące zarządzania plikami i poziomy zgody na przechowywanie/pobieranie plików w celu ochrony danych użytkownika. Urządzenia zgodne ze specyfikacją nazywane są czasami urządzeniami TCG Opal.
Szyfrowanie AES 256-bitowe to popularny sposób na zabezpieczenie dysków: jest niezwykle odporne na brutalne ataki. Szyfrowanie odbywa się w samym dysku SSD za pomocą sprzętu opracowanego specjalnie w tym celu, szybszego niż rozwiązania oparte na oprogramowaniu.
AES 256, natychmiastowa zmiana klucza
Dyski SSD obsługujące szyfrowanie sprzętowe oferują także inny sposób bezpiecznego kasowania – natychmiastową zmianę klucza (Instant Keychange). Po wydaniu komendy generowany jest nowy klucz, który zastępuje stary klucz w pamięci flash – cały proces zajmuje mniej niż sekundę. Kiedy komputer próbuje uzyskać dostęp do danych nowych klucz nie pasuje do starego, dlatego dane będą niedostępne z powodu braku uwierzytelnienia AES. Tak naprawdę dane nie są kasowane (przepisane do 0 lub 1), lecz są nieczytelne i tym samym zabezpieczone.
Przeżywalność