Aby zrozumieć fenomen silników bezszczotkowych, które z impetem wdzierają się szczególnie na rynek elektronarzędzi, należy zrozumieć istotę działania dotychczas stosowanych silników komutatorowych oraz poznać najważniejsze różnice pomiędzy nimi.
Podstawowym zadaniem silnika elektrycznego jest zamiana energii elektrycznej na mechaniczną, czyli wprawienie w ruch wału napędzanego urządzenia. W klasycznym silnikach komutator obracającego się wirnika przyjmuje ładunek elektryczny od szczotek wykonanych z grafitu, które przewodzą energię elektryczną poprzez bezpośredni kontakt z wirującym elementem. Powstające w wyniku komutacji pole magnetyczne przy użyciu specjalnych magnesów generuje ruch obrotowy.
Budowa, a co za tym idzie, również zasada działania silnika bezszczotkowego jest nieco inna. W urządzeniu tym komutator i szczotki zastąpiono cewkami nawiniętymi na nieruchomym rdzeniu, tzw. statorze (w silniku szczotkowym cewki znajdują się na ruchomym wirniku). To one, poprzez przepływ przez nie prądu, powodują powstawanie pola magnetycznego generującego rotację wirnika. Bardzo powszechnym i podstawowym rozwiązaniem jest zastosowanie trzech uzwojeń. Z uwagi na występujące tętnienia momentu obrotowego, producenci proponują jednak również silniki wyposażone w zestawy od jednej do nawet ośmiu par biegunów.
W związku z brakiem bezpośredniego kontaktu elementu obracającego się z nieruchomymi cewkami, nie ma konieczności stosowania szczotek grafitowych. Zastosowanie magnesów trwałych w konstrukcji silnika bezszczotkowego pozwala na uzyskanie większego momentu obrotowego oraz poprawienie sprawności urządzenia. Wszystko to dzięki dużej gęstości energii, jaką charakteryzują się przedmiotowe magnesy.
Silniki BLDC w TME
Dlaczego warto postawić na silniki bezszczotkowe
Rozwiązanie konstrukcyjne silnika bezszczotkowego niesie za sobą szereg korzyści. Najważniejsze różnice, o których należy wspomnieć, to:
- Cichsza i mniej awaryjna praca urządzenia – podczas pracy szczotki ocierają o wirujące elementy, powodując hałas. Szczotki są najczęściej zużywającym się elementem urządzeń w silnikach komutatorowych, co znacząco skraca ich żywotność;
- Poprawa bezpieczeństwa pracy – podczas pracy silnika bezszczotkowego nie dochodzi do niebezpiecznego dla użytkownika iskrzenia, które występuje w napędach klasycznych. Taka zaleta pozwala na wykorzystanie silnika w środowiskach wybuchowych oraz łatwopalnych;
- Wyższa sprawność urządzenia – wyeliminowanie oporów mechanicznych pozwala na osiągnięcie wyższych prędkości obrotowych wirnika oraz poprawienie momentu obrotowego;
- Poprawiona żywotność baterii – silnik bezszczotkowy pobiera mniejszą ilość prądu w stosunku do jego tradycyjnego odpowiednika. Fakt ten jest niezwykle istotny w przypadku urządzeń akumulatorowych, które na jednym ładowaniu mogą pracować znacznie dłużej;
- Precyzyjniejsza sterowalność – silniki BLDC pozwalają na sterowanie momentem obrotowym w bardzo precyzyjny sposób, co determinuje zmniejszenie bezwładności i ograniczenie zużycia energii elektrycznej;
- Znaczne ograniczenie bądź usunięcie konieczności zabiegów konserwacyjnych – przy odpowiednim użytkowaniu silnika powinien on działać bezawaryjnie, bez konieczności zewnętrznej ingerencji w konstrukcję. Wyeliminowanie szczotek sprawia bowiem, że wewnątrz urządzenia nie ma już newralgicznych części zużywających się podczas normalnej eksploatacji. Korzyścią płynącą z takiego faktu jest możliwość zainstalowania silnika w miejscu trudno dostępnym.
Aplikacje, w których silnik bezszczotkowy nie ma sobie równych
Przedmiotowe silniki idealnie sprawdzą się w oprzyrządowaniu komputerowym, które wymaga bezpiecznej, nieprzerwanej pracy przez długi czas. Przykładem mogą być dyski twarde czy wentylatory komputerowe, które podczas użytkowania komputera nieustannie obniżają temperaturę podzespołów. Jak już wspomniano powyżej, ze względu na ograniczenie zużycia prądu a także zminimalizowane wymiary, są one niezastąpione w profesjonalnych urządzeniach akumulatorowych, takich, jak wkrętarki, wiertarki czy szlifierki kątowe. Praca „na baterii” jest wówczas ekonomiczna, a jej czas dłuższy. Bardzo popularną w dzisiejszych czasach gałęzią przemysłu, która w ogromnym stopniu opiera się na silnikach bezszczotkowych jest produkcja samochodów elektrycznych i hybrydowych. Niemniej istotnym jest zastosowanie technologii bezszczotkowej w konstrukcjach pralek oraz klimatyzatorów. Beziskrowa praca jest niezbędna ze względu na duże zagrożenie porażeniowe. Ponadto, producenci pralek dla produktów wyposażonych w silniki bezszczotkowe oferują dłuższy termin gwarancji z uwagi na stabilniejszą pracę bębna, co pozwala na mniej awaryjną pracę. Inną korzyścią płynącą z zakupu takiej pralki jest ograniczenie kosztów eksploatacji.
Podział silników bezszczotkowych – silniki BLDC i PMSM
Najpowszechniej stosowanymi silnikami bezszczotkowymi są silniki BLDC (Brushless DC Motor), czyli rozwiązanie z trapezowym rozkładem siły elektromotorycznej oraz silniki PMSM (Permament Magnet Synchronous Motor) z sinusoidalnym rozkładem SEM. Rozróżniamy ponadto napędy zasilane prądem stałym oraz prądem przemiennym.
Sterowanie silnikiem bezszczotkowym
Zastosowanie uzwojeń na stojanie pozwala na regulację silnika poprzez zmianę prądów oddziałujących na nie i bieżącą ingerencję w wartość momentu obrotowego. Jak już wspomniano powyżej, wyróżnia się silniki BLDC oraz PMSM. Oznaczenie typu silnika wskazuje, w jaki sposób sterowane jest urządzenie. Sterowanie trapezowe pozwala na regulację, gdy nie wymaga się kontroli prędkości, a także momentu obrotowego silnika. Silniki takie wyposażone są w czujniki Halla, które określają położenie wirnika. Rozwiązanie takie jest mniej skomplikowane, ale też i mniej dokładne. Główną wadą takiej konstrukcji jest problematyczność regulacji przy niskich prędkościach obrotowych.
W silnikach PMSM, czyli o sinusoidalnym przebiegu siły elektromotorycznej, dzięki zastosowaniu specjalistycznych enkoderów, wyeliminowano niepożądane efekty komutacyjne występujące w silnikach BLDC, umożliwiając jednocześnie swobodną regulację nawet przy niewielkich prędkościach obrotowych. Dodatkowo rozwiązanie takie minimalizuje ryzyko występowania tętnień momentu obrotowego.
Trzecim i najbardziej zaawansowanym typem regulacji w silnikach bezszczotkowych jest sterowanie wektorowe. Rozwiązanie takie polega na zastosowaniu specjalnego bloku transformacyjnego przed regulatorem PI. Efektem takiego zabiegu jest poprawa dokładności sterowania względem dwóch poprzednich typów, przy jednoczesnym wyeliminowaniu tętnień oraz dobrej regulowalności w zakresie niskich obrotów.
Podsumowanie
Podłączenie silnika bezszczotkowego to niewątpliwie rozwiązanie warte uwagi zarówno producenta, jak i konsumenta. Ten pierwszy pozbywa się bowiem ryzyka częstych awarii. Produkty zyskują na jakości, a jednocześnie zmniejszają ilość wymaganych do montażu części. Kupujący otrzymuje natomiast produkt, który posłuży przez lata i nie będzie wymagał szczególnej ingerencji w jego działanie. Pomimo pewnej różnicy cenowej, spokój i bezpieczeństwo kupuje się na cały okres użytkowania. Warto zatem pochylić się nad ofertą urządzeń wyposażonych w silniki bezszczotkowe.
Silniki BLDC w TME